Publications by members of That Recommender Systems Lab.

Abstract

Recommender systems are personalized information access applications; they are ubiquitous in today's online environment, and effective at finding items that meet user needs and tastes. As the reach of recommender systems has extended, it has become apparent that the single-minded focus on the user common to academic research has obscured other important aspects of recommendation outcomes. Properties such as fairness, balance, profitability, and reciprocity are not captured by typical metrics for recommender system evaluation. The concept of multistakeholder recommendation has emerged as a unifying framework for describing and understanding recommendation settings where the end user is not the sole focus. This article describes the origins of multistakeholder recommendation, and the landscape of system designs. It provides illustrative examples of current research, as well as outlining open questions and research directions for the field.

Continue reading...

Abstract

Recommender systems research often requires the creation and execution of large numbers of algorithmic experiments to determine the sensitivity of results to the values of various hyperparameters. Existing recommender systems platforms fail to provide a basis for systematic experimentation of this type. In this paper, we describe librec-auto, a wrapper for the well-known LibRec library, which provides an environment that supports automated experimentation.

Continue reading...

Abstract

When evaluating recommender systems for their fairness to users, it may be necessary to make use of demographic attributes, which are personally sensitive and usually excluded from publicly-available data sets. In addition, these attributes are fixed and therefore it is not possible to experiment with different distributions using the same data. In this paper, we describe the Frequency-Linked Attribute Generation (FLAG) algorithm, and show its applicability for assigning synthetic demographic attributes to recommendation data sets.

Continue reading...

Abstract

Personalized recommendation brings about novel challenges in ensuring fairness, especially in scenarios in which users are not the only stakeholders involved in the recommender system. For example, the system may want to ensure that items from different providers have a fair chance of being recommended. To solve this problem, we propose a Fairness-Aware Re-ranking algorithm (FAR) to balance the ranking quality and multi-sided fairness. We iteratively generate the ranking list by trading off between accuracy and the coverage for the providers. Although fair treatment of providers is desirable, users may differ in their receptivity to the addition of this type of diversity. Therefore, personalized user tolerance towards provider diversification is incorporated. Experiments are conducted on both synthetic and real-world data. The results show that our proposed re-ranking algorithm can significantly promote fairness with a slight sacrifice in accuracy and can do so while being attentive to individual user differences.

Continue reading...